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A NOTE ON AXISYMMETRICAL FLUTTER OF CIRCULAR
CYLINDRICAL SHELLS OF FINITE LENGTH
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IN [I], Krumhaar investigated the stability of axisymmetricaI oscillations of a circular
cylindrical shell of finite length in a supersonic airstream parallel to the cylinder axis; he
studied the corresponding eigenvalue problem, calculated the eigenvalues and derived
the exact flutter boundaries. (A detailed survey on .flutter problems is given in [2].) In the
present note, the mode shapes of axisymmetricaI oscillations in a neighbourhood of these
flutter boundaries are investigated,

By restricting to radial oscillations of the form w(~, t) = w(~) eirol
, the stability problem

leads to the following non-self-adjoint eigenvalue problem:

d4 w dw
d~4 +A d~ = AW(~),

(Ib)

Here ~ = x/L is a nondimensional variable, x being the coordinate along the generators
of the shell and L its length (see Fig. I); W(~) denotes the complex amplitude of the shell
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FIG. L Sketch of the cylindrical shell,

vibration in radial direction, A is a generalized velocity proportional to the Mach number
M, and A is a complex eigenvalue parameter, As far as the distribution, multiplicity and
dependence on the real parameter A are concerned, the eigenvalue problem (I) has been
investigated in [I] for 0 =::;; A=::;; 1-1 X 105. The axisymmetrical shell oscillations are stable
as long as the generalized velocity A remains below a certain critical value A c ' so that all
corresponding eigenvalues AJ{A), j = 1,2, ... are located inside the so-called stability
parabola; the motion is unstable, however, if A > A c ' so that at least one of the correspond­
ing eigenvalues AJ{A), j = 1,2, ... is located outside the stability parabola. It was further
pointed out in [1] that at least in the range mentioned above the eigenvalue Al(A) (i.e. the
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eigenvalue coinciding with n4 for A = 0) will be the first one to cross the stability parabola
for increasing A. The critical value A e is, therefore, defined to be that value of A for which
Al(A) coincides with the stability parabola. Me is the corresponding Mach number. The
shape of this parabola is determined by the parameters specifying the problem (see [1],
p. 30). An increase of the material damping expressed by the damping coefficient y broadens
the parabola if all other parameters are kept constant, and hence has a stabilizing influence
on the flutter of the shell.

In this note we shall investigate the mode shape of the shell oscillation, i.e. the eigen­
function Wl(~' A) belonging to the eigenvalue Al(A) for some fixed value of A. For the case
ofa flat plate, which is described by the same eigenvalue problem but by a stability parabola
of smaller width, and which, therefore, leads to considerably smaller values of the critical
velocity Ae , Movchan [3] found that the maxima of the mode shapes are rapidly shifted
towards the trailing edge with increasing velocity A. To compare the behaviour of a
circular cylindrical shell with that of the flat plate, we are especially interested in the
behaviour of the mode shapes Wl(~' A) when A passes from stable values through Ae to
unstable values.

For the calculation of Wl(~' A) the eigenvalues given in [1; Fig. 7] are used. (Actually,
the eigenvalues are not taken from [1; Fig. 7] but from the original computer data under­
lying this figure.) As (la) is a differential equation with constant coefficients, Wl(~' A)
may be represented in the form

4

Wl(~' A) = L Cje-Zj~
j= 1

if the four roots Zj of

z4-Az- A1(A) = 0

are different. This condition is fulfilled for all numerical calculations referred to below.
The boundary conditions (lb) lead to a homogeneous system of four linear equations

for Cj' Since its determinant is equal to zero, Cj may be calculated up to a common arbitrary
factor:

Cl = e-Z2(zi-z5)+e-Z'(z5 zi)+e-z'(zf-z~)

Cz = e-Z'(z5-zi)+e-Z\(zf-zi)+e-z'(z~-zn

C3 = e-Z'(zi-z~)+e-Z2(zi-zf)+e-z'(zf-z5)

C4 = e-Z'(z~-z5)+e-Z2(z~-zi)+e-Z\(z5-d).

The numerical computation ofwl(~' A) is related to an experimental situation described
by the data given in [1 ; p. 50].

Calculations were carried through for several values of the damping coefficient y and
the ratio hiR of the shell thickness to the shell radius.

For the special combination y = 0'0005; hlR = 6·25 x 10- 4 one obtains Ae = 97903·37
and Me = 1·54. For these values Fig. 2 represents in a suitable normalisation the real
parts 9lWl(~' A), plotted versus the nondimensional variable ~ in the interval 0·5 S ~ S 1,
for two values of the parameter A belonging to the stable domain (A < A e), for the critical
value (A = A e), and for two values of A belonging to the unstable domain (A > A e).

The interval 0 S ~ S 0·5 was omitted since 9lWl(~' A) is very small there compared with
its values in 0·5 S ~ sLOne observes that the maxima of 9lWl(~'A) are shifted towards
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the trailing edge of the shell with increasing values of A, i.e. with increasing velocity of the
airstream. The imaginary part JW1(~'A) displays a similar behaviour.

This result corresponds to what Movchan found in [3] for the case of a flat panel of
finite length.

The computations using other values for y and h/R yield qualitatively the same result
as that mentioned above.
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FIG. 2. Real parts 9lWI(~' A) of the mode shapes for different Mach numbers and y = 0'0005, h/R =
6·25 x 10- 4

. The graphs a, b, c, d, e correspond to the Mach numbers M = 0·94 M" M = 0·97 M"
M = Me,M = \'OIMe,M = \·05 Me respectively.
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